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Abstract. We present resuits for the band conductivity and the density of states of elechuns 
in realistic lwo-dimensional periodic potentials and magnetic fields. We show Ihe effects of 
the number of flux quanta per unit cell in producing Hofstader’s-buttedy-lii splinings in the 
limit of small field, but outside the simple tight-binding limit, and for high fields where the 
dominant effecl is lhe I d  splilting of Landau levels to form weakly coupled edge states round 
the minima and maxima of the potential. ’he broadening and splitting of lhese slates lo form 
Hofstader’s bultedy then occurs on a much finer energy scale. 

1. Introduction 

Experiments on lateral-surface superlattices [I-IO] approach the point where effects due 
to interactions between the period of the lattice, the Fermi wavelength, and the magnetic 
length should be apparent. 

So far experiments on length scales of around 300 nm have shown mostly semi-classical 
effects [ 1 I ]  from the interaction of the periods of the cyclotron radius and the superlattice 
potential with both one-dimensional potentials [ 12-1 61, and two-dimensional potentials 
[5,&10] although some effects have required the effect of the density of states on the 
scattering time to be taken into account [17-19]. For smaller systems it is hoped that purely 
quantum mechanical effects, seen successfully in single systems such as quantum point 
contacts [20,21fshould be apparent. 

Without a magnetic field, the periodic potential should create gaps at the band edges 
with a reduction in the conductivity. A magnetic field is expected to introduce further gaps 
depending on the number of flux quanta per unit cell. In simple cases such as a weak 
potential [22-241, a tight-binding band [22,25], or hopping between edge states in different 
unit cells [26,27] the magnetic field produces a recursively split spectrum. 

Real experiments however are not done with an ideal, tight-binding band, but with many 
electrons in each unit cell, and so many overlapping bands; with inelastic scattering; with 
a random potential from impurities; ideally with the periodic potential and the cyclotron 
energy of similar magnitudes to maximize any effects; and with the magnitude of hopping 
terms in a tight-binding picture depending on the magnetic field and Fermi energy. We 
therefore present results here for the band conductivity and density of states of electrons 
in two-dimensional periodic potentials for realistic Fermi energies and magnetic fields. We 
focus in this paper on the bulk effects which are likely to show the effects of band gaps 
in a simpler form than situations where edges are important [26]. In practical experiments, 
the effects of edge states may or may not be important, depending on the geometry of the 
sample, and the measurement being made. 
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Here, we present results in the low field limit showing the size of the commensurability 
effects outside the well known tight-binding limit of Hofstader's butterfly, where we expect 
other physics to dominate [28]. The high-field limit has been considered by others [61, and 
we describe how the experimentally observable effects in this limit can be understood in a 
local picture. 

In section 2 we describe the model used for the conductivity, and describe the parameters 
used. In section 3 we show that the method describes the semi-classical cyclotron radius 
commensurability oscillations, and that the scattering conductivity can be small relative to 
the band conductance. In section 4 we show the effect of the commensurability between 
the area per flux quanta, and the area of a unit cell of the periodic potential. At low Fermi 
energies the band conductivity is suppressed for fractional numbers of flux quanta per unit 
cell. At large energies and magnetic fields the Landau levels are split into sublevels. A local 
model describes the basic splitting of the Landau levels. Most of the states can only tunnel 
weakly between different unit cells, so that the fine structure caused by commensurability 
effects is hard to observe. Real experiments are commonly performed by varying the 
magnetic field, keeping gate voltages constant, so we present results for the density of 
states calculated for fixed Fermi energy, and varying magnetic field. 

2. Model 

With the assumptions of a fixed scattering time and periodic potential, we calculate the 
longitudinal band conductivity as done recently by Degani and Leburton [7]: 

where r is the transport scattering time, v, is the group velocity of the mode in the x 
direction, A is the area of the system, and f is the Fermi-Dirac distribution function. For 
simplicity we ignore spin splitting throughout this paper. The validity and the method of 
solving equation (1) have been discussed in a preceding paper [28]. 

In the following we use a transport relaxation time r = 38 ps, corresponding to a 
mobility of 100 m2 V-' s-I . Th e quantum relaxation time -the time for an electron to be 
scattered out of a plane wave state - is typically about a tenth of the transport relaxation 
time because of the long range nature of the Coulomb potential [29.30], and we use a value 
of rq = 3.8 ps in the density of states calculations [311. 

Since the amplitudes of short-wavelength Fourier components of the potential are small, 
because of the distance from the gates to the two-dimensional electron gas (2DEG) [32], we 
use the simple potential 

v(x, y) = +~o[cos(2nx/n) t cos(2~ry/a)]. (2) 
The peak-peak potential V, can be up to about 20 meV and of the order of the Fermi energy 
[33], and lattice periods down to of the order of a = 50 nm are practical. We show here 
results for VO = 5 meV and a = 100 nm. 

3. Low field behaviour 

Figure 1 shows the band conductivity, and the density of states for a magnetic field of 0.21 T, 
as a function of the cyclotron radius. (The cyclotron radius is defined as the cyclotron radius 
in the absence of the periodic potential, r, = m'vpfeB.) 
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F w r e  1. Band conductivity and density of smts for a 
magnetic ield of 0.21 T, p / q  = 5 .  The conductivity is 
shown ai T = 0 K and T = 3 K. also shown (straight 
line) is lhe classical scattering conductivity, multiplied 
by 25 for clarity. (The cyclolron radius is defined as 
re = m*w/eB where w = JZm'EF.) 

F w r e  2. Band conductivily for magnetic fields 
of 0.0.28. and 0.41 T. The venical lines mark the 
positions of lhe Landau levels for B = 0.41 T. 

The overall shape of the band conductivity versus energy graph is determined by two 
limits. Firstly, the conductivity must vanish as the Fermi energy falls below the minimum 
of the potential. Secondly, for large Fermi energies, where the cyclotron radius is larger 
than the lattice period, the dispersion of the Landau levels is smaller, because the electron 
sees the potential averaged over many unit cells [ 1 I]. The conductivity should therefore 
fall off again as the Fermi energy rises. Stieda and MacDonald [34] have described the 
same behaviour in terms of the probability of magnetic breakdown p [34-371: 

p = exp (-x V:/4tlwc EF sin 28 1 (3) 

where V, is the size of the band gap at the Brillouin zone edge at zero magnetic field, and 
28 is the scattering angle under Bragg reflection [34]. 

3.1. Cyclotron oscillations 

We now consider some of the fine structure seen in the results. The first thing which the 
calculations show clearly are the cyclotron radius commensurability oscillations, which have 
been observed by Weiss and co-workers 191 and others [4,5,8,10]. 

The phase of the oscillations in the conductivity observed experimentally will depend 
on whether the band conductivity or the scattering conductivity is dominant. While in 
experiments with larger lattice periods than the 100 nm considered in this paper the scattering 
conductivity was dominant [12,19], as the lattice period is reduced the band conductivity 
becomes more important. 

Figure 1 shows the classical scattering conductivity U = uo/(l + wfr2) together with 
the band conductivity. The scattering conductivity for the lattice period considered is 
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small compared with the band conductance. Note that this comparison is sensitive to 
the magnitude of the periodic potential used, and to the scattering time chosen. To a first 
approximation, the band conductivity is proportional to the magnitude of the potential, so 
that for a weaker potential the scattering conductivity will be more important. In addition, 
the band conductivity is proportional to the scattering time, whereas for o,r >> 1 the 
scattering conductivity varies as 1 / ~ .  For large magnetic fields the scattering conductivity 
will be more important than suggested by this comparison, since the inelastic scattering 
time will be much smaller when the Fermi energy lies within a Landau level because of 
the enhanced density of states, while the band conductivity will be reduced because the 
periodic potential will be strongly screened 138,391. 

4. Quantum commensurability effects 

Part of the interest in antidot lattices arises from Hofstader’s suggestion I251 that the 
recursively split band structure arising from the interaction between the lattice periodicity 
and the magnetic field might be observable in artificial lattices. In a previous paper [281 
we have shown results for the splitting in the lowest tight-binding band of the periodic 
potential. Because of the effects of disorder and electron-electron interactions, the splitting 
is not expected to be observable in that regime [28]. We now present results for the 
commensurability effects in two regimes, where the electron density is higher, so that 
electron-electron interactions and disorder are likely to be less important. The first is the 
low-field regime with of the order of one flux quantum per unit cell. The second is the 
high-field regime, where with p / q  flux quanta per unit cell, Landau levels are expected to 
be split into 9 sub-levels 1221. 

4.1, Low field commensurability effects 

We show now the effects of the magnetic field on the band structure in the low-field regime. 
Figure 2 shows the band conductivity for zero magnetic field, together with the conductivity 
for p/9 = 3 and p/q  = 1. ( p / q  = 1 is a magnetic field of 0.4 T.) 

At zero magnetic field two separated bands are seen. The lowest is a simple tight- 
binding band, as analysed by Hofstader [U], and for which we have presented numerical 
results in a previous paper f28]. The second band is formed in a tight-binding picture from 
the two plike states in the dot, and is separated by a gap of about 0.1 meV from the next 
band. The simple Hofstader splitting is not expected to apply to this band because it is 
formed from two states, and is not well separated from the other bands. 

For p / q  = 3 the recursive splitting in the lowest band is clearly resolved, and the 
conductivity can be seen to be suppressed relative to the conductivity with zero or one flux 
quanta per unit cell. The same effect can be observed at the low end of the next band. At 
higher energies, enhanced skructure can be seen for q > 1, but the overall band conductivity 
is dominated by the increasing magnetic field. The positions of the Landau levels that would 
be observed in the absence of a periodic potential are marked on the figure for p/q = 1 ,  
and show that for a magnetic field of 0.4 T we are starting to resolve Landau-level-like 
structure in the band conductivity at these energies. 

4.2.  High field commensurability effects 

For large magnetic fields ( h w  >> VO) with p / q  flux quanta to each unit cell of the potential, 
the individual Landau levels are expected to be split into p sublevels [22]. Figur3 shows 
for example the band conductivity for p/q = 7/2. 

R B S Oakeshott and A MacKinnon 
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Figure 3. Band cnnductivity showing splilting 
of the lowest Landau level for B = 1.4 T. 
p / q  = 3. The inset shows in more detail 
the splitting of one of the Landau levels, 
calculated without any smoothing, and (bold 

5 line) smoothed by a Lorentzian comesponding 
10 an inelastic seatrering time of IO ps. 

The splitting in the lowest Landau level can be simply understood in terms of a local 
model. Figur4 shows the local density of states for the peaks in the density of states in the 
lowest Landau level with six flux quanta per unit cell. The states at low energies within 
the Landau level are seen to be edge states in the minimum of the potential, and the states 
at high energies are seen to be edge states around the maximum of the potential. Except 
around the centre of the split Landau level, the states have small weight passing through 
the saddle points from one unit cell to the next. The conductivity is therefore Iagest in the 
centre of the levels, as can be observed in figure 3. Since most of the states are confined 
around the minimum or maximum of the potential, they are only weakly broadened, and 
possibly split by the periodic potential, and the conductivity is reduced This splitting is 
the splitting considered by Gerhardts er a1 [6]. 

Since in a completely filled Landau level there is one electron of each spin per flux 
quantum, for a magnetic field with p flux quanta per unit cell, it is natural for the Landau 
levels to be split into p states. 

Assuming that the states within a Landau level can be described as edge states circulating 
about either the minima or maxima of the potential, we can estimate the energies of the sub- 
levels, and the width of the split Landau level (see appendix for details). For large magnetic 
fields the position of the states is described well by the model; for smaller magnetic fields 
the cyclotron radius is larger, and the states are influenced by the non-parabolic nature of 
the potential. For all magnetic fields, the states nearer the centre of the level are closer 
together because of the non-parabolic nature of the potential. 

In practice experiments are often performed by varying the magnetic field. We therefore 
show in figure 5 the behaviour of the density of states as a function of the magnetic field 
with a fixed Fermi energy, together with the predicted positions of the first and last split 
states of the lowest Landau level calculated by appmximating the minimum and maximum 
of the potential by parabolic potentials. At low magnetic fields the fine stmcture is not 
resolved since the calculation is limited to magnetic fields with numbers p f q  of flux quanta 
per unit cell, with q < 7. At larger magnetic fields Shubnikov-de Hass behaviour is seen, 
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Figure 4. Local density of states for six flux quanta per unit cell. Energies are at the maxima 
of the density of states within the (split) first Landau level. 
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Figure 5. Density of states as a function of magnetic field at a 
F m i  energy of 10 meV and with different polential amplitudes 
Vo. The lanice period was 50 nm. The circles show the limits of the 
lowest Landau level calculated from the simple model in d o n  4. 

with the peaks in the density of states broadened by the periodic potential, and the gross 
splitting of the Landau levels into edge states within the unit cells can be seen. 
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The model of states in a parabolic well breaks down for higher Landau levels, for the 
range of values considered here, because the predicted energies of the split states all lie in 
the region where the potential is not described well by a single parabola 

Since the mechanism described is local to one unit cell, we expect the gross splitting, 
and the consequent reduction in the conductivity, to be relatively easily observable in the 
presence of other physical mechanisms such as electron interactions and disorder. A simple 
estimate of the magnitude of these effects is obtained from the inelastic scattering time, 
which is of the order of 10 ps in zero magnetic field 1401. (The increased density of states 
in the presence of a magnetic field will tend to reduce this time.) Figure 3 shows that 
the effect of smoothing the conductivity by a Lorentzian corresponding to r = 10 ps is to 
hide the full Hofstader-like splitting, except in the central part of the Landau level. (For 
p f q  = $ we expect between three and four sub-levels in the local picture.) For a shorter 
scattering time only the gross splitting into three sublevels will be visible. 

5. Summary 

We have presented results for the density of states and the band conductivity of a 2DEG in 
a periodic potential and magnetic field. We have shown how the method reproduces the 
cyclotron radius commensurability oscillations, and the scales on which the magnetic length 
commensurability effects are visible. 

At low magnetic fields the band structure is complex, and except for the lowest, narrow, 
tight-binding band we do not see a clean splitting of the bands into the Hofstader buttefly. 
We do though see a reduction in the band conductivity, and added structure from band 
splitting, for non-integral numbers of flux quanta per unit cell. 

For high magnetic fields, because the magnetic field suppresses the conductivity, the 
bands and Landau levels are MITOW, and Hofstader’s-butterfly like effects will be difficult 
to observe. The gross splitting of the Landau levels into sub-levels is a local consequence 
of the formation of edge states, and so is likely to be relatively robust. 

Appendix 

Expanding the potential V around the minimum 

a2v/ax2 = $ v , ( 2 ~ / a ) ~  

gives a harmonic oscillator frequency 00 with 

mi = (Vo/m,az)nz. 

Solving Schrodinger’s equation for the states in a parabolic well and magnetic field, one 
finds states at energies 

(6) 
where n, m are integers. For 00 << U,, the states that would be degenerate in the absence 
of the parabolic potential, have a separation 

i h  (0: + 4 ~ 3 ” ~  (2n + 1 + Iml) t fochm 

which is approximately hoo(oo/o,), independent of Landau level. The first state in the Nth 
Landau level is at (2N - l)hm,/2 + N A  - Vo/2. The same expansion can be performed 
about the maximum giving the highest state of the split band at (2N- l )hoC/2-NAt  V0/2. 
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For large magnetic fields, A is small, and the  width of the split band approaches the width 
of the potential. For higher Landau levels the predicted energies of the first and last states 
cross, and the model must break down before this point due to the non-parabolic nature of 
the periodic potential. 
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